Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Malar J ; 23(1): 96, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582837

RESUMO

BACKGROUND: Understanding the dynamics of gametocyte production in polyclonal Plasmodium falciparum infections requires a genotyping method that detects distinct gametocyte clones and estimates their relative frequencies. Here, a marker was identified and evaluated to genotype P. falciparum mature gametocytes using amplicon deep sequencing. METHODS: A data set of polymorphic regions of the P. falciparum genome was mined to identify a gametocyte genotyping marker. To assess marker resolution, the number of unique haplotypes in the marker region was estimated from 95 Malawian P. falciparum whole genome sequences. Specificity of the marker for detection of mature gametocytes was evaluated using reverse transcription-polymerase chain reaction of RNA extracted from NF54 mature gametocytes and rings from a non-gametocyte-producing strain of P. falciparum. Amplicon deep sequencing was performed on experimental mixtures of mature gametocytes from two distinct parasite clones, as well as gametocyte-positive P. falciparum field isolates to evaluate the quantitative ability and determine the limit of detection of the genotyping approach. RESULTS: A 400 bp region of the pfs230 gene was identified as a gametocyte genotyping marker. A larger number of unique haplotypes was observed at the pfs230 marker (34) compared to the sera-2 (18) and ama-1 (14) markers in field isolates from Malawi. RNA and DNA genotyping accurately estimated gametocyte and total parasite clone frequencies when evaluating agreement between expected and observed haplotype frequencies in gametocyte mixtures, with concordance correlation coefficients of 0.97 [95% CI: 0.92-0.99] and 0.92 [95% CI: 0.83-0.97], respectively. The detection limit of the genotyping method for male gametocytes was 0.41 pfmget transcripts/µl [95% CI: 0.28-0.72] and for female gametocytes was 1.98 ccp4 transcripts/µl [95% CI: 1.35-3.68]. CONCLUSIONS: A region of the pfs230 gene was identified as a marker to genotype P. falciparum gametocytes. Amplicon deep sequencing of this marker can be used to estimate the number and relative frequency of parasite clones among mature gametocytes within P. falciparum infections. This gametocyte genotyping marker will be an important tool for studies aimed at understanding dynamics of gametocyte production in polyclonal P. falciparum infections.


Assuntos
Malária Falciparum , Plasmodium falciparum , Masculino , Feminino , Humanos , Plasmodium falciparum/genética , Genótipo , Malária Falciparum/parasitologia , RNA , Sequenciamento de Nucleotídeos em Larga Escala
2.
BMC Public Health ; 24(1): 951, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566043

RESUMO

BACKGROUND: Despite significant success in the fight against malaria over the past two decades, malaria control programmes rely on only two insecticidal methods: indoor residual spraying and insecticidal-treated nets. House improvement (HI) can complement these interventions by reducing human-mosquito contact, thereby reinforcing the gains in disease reduction. This study assessed the implementation fidelity, which is the assessment of how closely an intervention aligns with its intended design, feasibility, and sustainability of community-led HI in southern Malawi. METHODS: The study, conducted in 22 villages (2730 households), employed a mixed-methods approach. Implementation fidelity was assessed using a modified framework, with longitudinal surveys collecting data on HI coverage indicators. Quantitative analysis, employing descriptive statistics, evaluated the adherence to HI implementation. Qualitative data came from in-depth interviews, key informant interviews, and focus groups involving project beneficiaries and implementers. Qualitative data were analysed using content analysis guided by the implementation fidelity model to explore facilitators, challenges, and factors affecting intervention feasibility. RESULTS: The results show that HI was implemented as planned. There was good adherence to the intended community-led HI design; however, the adherence could have been higher but gradually declined over time. In terms of intervention implementation, 74% of houses had attempted to have eaves closed in 2016-17 and 2017-18, compared to 70% in 2018-19. In 2016-17, 42% of houses had all four sides of the eaves closed, compared to 33% in 2018-19. Approximately 72% of houses were screened with gauze wire in 2016-17, compared to 57% in 2018-19. High costs, supply shortages, labour demands, volunteers' poor living conditions and adverse weather were reported to hinder the ideal HI implementation. Overall, the community described community-led HI as feasible and could be sustained by addressing these socioeconomic and contextual challenges. CONCLUSION: Our study found that although HI was initially implemented as planned, its fidelity declined over time. Using trained volunteers facilitated the fidelity and feasibility of implementing the intervention. A combination of rigorous community education, consistent training, information, education and communication, and intervention modifications may be necessary to address the challenges and enhance the intervention's fidelity, feasibility, and sustainability.


Assuntos
Anopheles , Malária , Animais , Humanos , Malaui , Estudos de Viabilidade , Grupos Focais , Malária/prevenção & controle
3.
Arch Ration Mech Anal ; 247(2): 16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36861142

RESUMO

On a smooth bounded Euclidean domain, Sobolev-subcritical fast diffusion with vanishing boundary trace is known to lead to finite-time extinction, with a vanishing profile selected by the initial datum. In rescaled variables, we quantify the rate of convergence to this profile uniformly in relative error, showing the rate is either exponentially fast (with a rate constant predicted by the spectral gap), or algebraically slow (which is only possible in the presence of non-integrable zero modes). In the first case, the nonlinear dynamics are well-approximated by exponentially decaying eigenmodes up to at least twice the gap; this refines and confirms a 1980 conjecture of Berryman and Holland. We also improve on a result of Bonforte and Figalli by providing a new and simpler approach which is able to accommodate the presence of zero modes, such as those that occur when the vanishing profile fails to be isolated (and possibly belongs to a continuum of such profiles).

4.
Am J Trop Med Hyg ; 108(1): 51-60, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36410320

RESUMO

Larval source management (LSM) could reduce malaria transmission when executed alongside core vector control strategies. Involving communities in LSM could increase intervention coverage, reduce operational costs, and promote sustainability via community buy-in. We assessed the effectiveness of community-led LSM to reduce anopheline larval densities in 26 villages along the perimeter of Majete Wildlife Reserve in southern Malawi. The communities formed LSM committees which coordinated LSM activities in their villages following specialized training. Effectiveness of larviciding by LSM committees was assessed via pre- and post-spray larval sampling. The effect of community-led LSM on anopheline larval densities in intervention villages was assessed via comparisons with densities in non-LSM villages over a period of 14 months. Surveys involving 502 respondents were undertaken in intervention villages to explore community motivation and participation, and factors influencing these outcomes. Larviciding by LSM committees reduced anopheline larval densities in post-spray sampling compared with pre-spray sampling (P < 0.0001). No differences were observed between anopheline larval densities during pre-spray sampling in LSM villages and those in non-LSM villages (P = 0.282). Knowledge about vector biology and control, and someone's role in LSM motivated community participation in the vector control program. Despite reducing anopheline larval densities in LSM villages, the impact of the community-led LSM could not be detected in our study setting because of low mosquito densities after scale-up of core malaria control interventions. Still, the contributions of the intervention in increasing a community's knowledge of malaria, its risk factors, and its control methods highlight potential benefits of the approach.


Assuntos
Anopheles , Malária , Animais , Humanos , Malaui/epidemiologia , Controle de Mosquitos/métodos , Malária/prevenção & controle , Mosquitos Vetores , Ecossistema , Participação da Comunidade , Larva
5.
PLoS Pathog ; 18(7): e1010622, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793345

RESUMO

Malaria hotspots have been the focus of public health managers for several years due to the potential elimination gains that can be obtained from targeting them. The identification of hotspots must be accompanied by the description of the overall network of stable and unstable hotspots of malaria, especially in medium and low transmission settings where malaria elimination is targeted. Targeting hotspots with malaria control interventions has, so far, not produced expected benefits. In this work we have employed a mechanistic-stochastic algorithm to identify clusters of super-spreader houses and their related stable hotspots by accounting for mosquito flight capabilities and the spatial configuration of malaria infections at the house level. Our results show that the number of super-spreading houses and hotspots is dependent on the spatial configuration of the villages. In addition, super-spreaders are also associated to house characteristics such as livestock and family composition. We found that most of the transmission is associated with winds between 6pm and 10pm although later hours are also important. Mixed mosquito flight (downwind and upwind both with random components) were the most likely movements causing the spread of malaria in two out of the three study areas. Finally, our algorithm (named MALSWOTS) provided an estimate of the speed of malaria infection progression from house to house which was around 200-400 meters per day, a figure coherent with mark-release-recapture studies of Anopheles dispersion. Cross validation using an out-of-sample procedure showed accurate identification of hotspots. Our findings provide a significant contribution towards the identification and development of optimal tools for efficient and effective spatio-temporal targeted malaria interventions over potential hotspot areas.


Assuntos
Anopheles , Malária , Parasitos , Animais , Humanos , Gado , Malária/parasitologia , Controle de Mosquitos
6.
PLOS Glob Public Health ; 2(7): e0000627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962454

RESUMO

House improvement (HI) refers to the full screening or closing of openings such as windows, doors, and eaves, as well as the installation of ceilings, to reduce mosquito-human contact indoors. HI is a viable supplementary intervention that reduces malaria transmission further than the existing strategies alone. In Malawi, HI has not been widely implemented and evaluated for malaria control. Concerns about lack of local evidence, durability in different epidemiological and cultural settings, and the cost of large-scale implementation are among the reasons the strategy is not utilised in many low-income countries. This study assessed community perceptions, experiences, and acceptability of community-led HI in Chikwawa district, southern Malawi. This was a qualitative study where separate focus group discussions were conducted with members from the general community (n = 3); health animators (n = 3); and HI committee members (n = 3). In-depth interviews were conducted with community members (n = 20), and key-informant interviews were conducted with health surveillance assistants and chiefs (n = 23). All interviews were transcribed and coded before performing a thematic content analysis to identify the main themes. Coded data were analysed using Nvivo 12 Plus software. Study participants had a thorough understanding of HI. Participants expressed satisfaction with HI, and they reported enabling factors to HI acceptability, such as the reduction in malaria cases in their villages and the safety and effectiveness of HI use. Participants also reported barriers to effective HI implementation, such as the unavailability and inaccessibility of some HI materials, as well as excessive heat and darkness in HI houses compared to non-HI houses. Participants indicated that they were willing to sustain the intervention but expressed the need for strategies to address barriers to ensure the effectiveness of HI. Our results showed the high knowledge and acceptability of HI by participants in the study area. Intensive and continued health education and community engagement on the significance of HI could help overcome the barriers and improve the acceptability and sustainability of the intervention.

7.
Malar J ; 20(1): 473, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930300

RESUMO

BACKGROUND: Malaria, acute respiratory infections (ARIs) and diarrhoea are the leading causes of morbidity and mortality among children under 5 years old. Estimates of the malaria incidence are available from a previous study conducted in southern Malawi in the absence of community-led malaria control strategies; however, the incidence of the other diseases is lacking, owing to understudying and competing disease priorities. Extensive malaria control measures through a community participation strategy were implemented in Chikwawa, southern Malawi from May 2016 to reduce parasite prevalence and incidence. This study assessed the incidence of clinical malaria, ARIs and acute diarrhoea among under-five children in a rural community involved in malaria control through community participation. METHODS: A prospective cohort study was conducted from September 2017 to May 2019 in Chikwawa district, southern Malawi. Children aged 6-48 months were recruited from a series of repeated cross-sectional household surveys. Recruited children were followed up two-monthly for 1 year to record details of any clinic visits to designated health facilities. Incidence of clinical malaria, ARIs and diarrhoea per child-years at risk was estimated, compared between age groups, area of residence and time. RESULTS: A total of 274 out of 281 children recruited children had complete results and contributed 235.7 child-years. Malaria incidence was 0.5 (95% CI (0.4, 0.5)) cases per child-years at risk, (0.04 in 6.0-11.9 month-olds, 0.5 in 12.0-23.9 month-olds, 0.6 in 24.0-59.9 month-olds). Incidences of ARIs and diarrhoea were 0.3 (95% CI (0.2, 0.3)), (0.1 in 6.0-11.9 month-olds, 0.4 in 12.0-23.9 month-olds, 0.3 in 24.0-59.9 month-olds), and 0.2 (95% CI (0.2, 0.3)), (0.1 in 6.0-11.9 month-olds, 0.3 in 12.0-23.9 month-olds, 0.2 in 24.0-59.9 month-olds) cases per child-years at risk, respectively. There were temporal variations of malaria and ARI incidence and an overall decrease over time. CONCLUSION: In comparison to previous studies, there was a lower incidence of clinical malaria in Chikwawa. The incidence of ARIs and diarrhoea were also low and decreased over time. The results are promising because they highlight the importance of community participation and the integration of malaria prevention strategies in contributing to disease burden reduction.


Assuntos
Diarreia/epidemiologia , Malária/epidemiologia , Doenças Respiratórias/epidemiologia , Doença Aguda/epidemiologia , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Malaui/epidemiologia , Masculino , Estudos Prospectivos
8.
Elife ; 102021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34672946

RESUMO

Background: Monitoring malaria transmission is a critical component of efforts to achieve targets for elimination and eradication. Two commonly monitored metrics of transmission intensity are parasite prevalence (PR) and the entomological inoculation rate (EIR). Comparing the spatial and temporal variations in the PR and EIR of a given geographical region and modelling the relationship between the two metrics may provide a fuller picture of the malaria epidemiology of the region to inform control activities. Methods: Using geostatistical methods, we compare the spatial and temporal patterns of Plasmodium falciparum EIR and PR using data collected over 38 months in a rural area of Malawi. We then quantify the relationship between EIR and PR by using empirical and mechanistic statistical models. Results: Hotspots identified through the EIR and PR partly overlapped during high transmission seasons but not during low transmission seasons. The estimated relationship showed a 1-month delayed effect of EIR on PR such that at lower levels of EIR, increases in EIR are associated with rapid rise in PR, whereas at higher levels of EIR, changes in EIR do not translate into notable changes in PR. Conclusions: Our study emphasises the need for integrated malaria control strategies that combine vector and human host managements monitored by both entomological and parasitaemia indices. Funding: This work was supported by Stichting Dioraphte grant number 13050800.


Assuntos
Anopheles/parasitologia , Malária Falciparum/epidemiologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/isolamento & purificação , Adolescente , Adulto , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Malária Falciparum/parasitologia , Malaui/epidemiologia , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Prevalência , Análise Espaço-Temporal , Adulto Jovem
9.
Malar J ; 20(1): 353, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446033

RESUMO

BACKGROUND: Understanding the blood feeding preferences and resting habits of malaria vectors is important for assessing and designing effective malaria vector control tools. The presence of livestock, such as cattle, which are used as blood meal hosts by some malaria vectors, may impact malaria parasite transmission dynamics. The presence of livestock may provide sufficient blood meals for the vectors, thereby reducing the frequency of vectors biting humans. Alternatively, the presence of cattle may enhance the availability of blood meals such that infectious mosquitoes may survive longer, thereby increasing the risk of malaria transmission. This study assessed the effect of household-level cattle presence and distribution on the abundance of indoor and outdoor resting malaria vectors. METHODS: Houses with and without cattle were selected in Chikwawa district, southern Malawi for sampling resting malaria vectors. Prokopack aspirators and clay pots were used for indoor and outdoor sampling, respectively. Each house was sampled over two consecutive days. For houses with cattle nearby, the number of cattle and the distances from the house to where the cattle were corralled the previous night were recorded. All data were analysed using generalized linear models fitted with Poisson distribution. RESULTS: The malaria vectors caught resting indoors were Anopheles gambiae sensu stricto (s.s.), Anopheles arabiensis and Anopheles funestus s.s. Outdoor collections consisted primarily of An. arabiensis. The catch sizes of indoor resting An. gambiae sensu lato (s.l.) were not different in houses with and without cattle (P = 0.34). The presence of cattle near a house was associated with a reduction in the abundance of indoor resting An. funestus s.l. (P = 0.04). This effect was strongest when cattle were kept overnight ≤ 15 m away from the houses (P = 0.03). The blood meal hosts varied across the species. CONCLUSION: These results highlight differences between malaria vector species and their interactions with potential blood meal hosts, which may have implications for malaria risk. Whereas An. arabiensis remained unaffected, the reduction of An. funestus s.s. in houses near cattle suggests a potential protective effect of cattle. However, the low abundance of mosquitoes reduced the power of some analyses and limited the generalizability of the results to other settings. Therefore, further studies incorporating the vectors' host-seeking behaviour/human biting rates are recommended to fully support the primary finding.


Assuntos
Anopheles/parasitologia , Malária/transmissão , Controle de Mosquitos , Mosquitos Vetores/parasitologia , Animais , Bovinos , Malaui
10.
Malar J ; 20(1): 268, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120608

RESUMO

BACKGROUND: House improvement (HI) to prevent mosquito house entry, and larval source management (LSM) targeting aquatic mosquito stages to prevent development into adult forms, are promising complementary interventions to current malaria vector control strategies. Lack of evidence on costs and cost-effectiveness of community-led implementation of HI and LSM has hindered wide-scale adoption. This study presents an incremental cost analysis of community-led implementation of HI and LSM, in a cluster-randomized, factorial design trial, in addition to standard national malaria control interventions in a rural area (25,000 people), in southern Malawi. METHODS: In the trial, LSM comprised draining, filling, and Bacillus thuringiensis israelensis-based larviciding, while house improvement (henceforth HI) involved closing of eaves and gaps on walls, screening windows/ventilation spaces with wire mesh, and doorway modifications. Communities implemented all interventions. Costs were estimated retrospectively using the 'ingredients approach', combining 'bottom-up' and 'top-down approaches', from the societal perspective. To estimate the cost of independently implementing each intervention arm, resources shared between trial arms (e.g. overheads) were allocated to each consuming arm using proxies developed based on share of resource input quantities consumed. Incremental implementation costs (in 2017 US$) are presented for HI-only, LSM-only and HI + LSM arms. In sensitivity analyses, the effect of varying costs of important inputs on estimated costs was explored. RESULTS: The total economic programme costs of community-led HI and LSM implementation was $626,152. Incremental economic implementation costs of HI, LSM and HI + LSM were estimated as $27.04, $25.06 and $33.44, per person per year, respectively. Project staff, transport and labour costs, but not larvicide or screening material, were the major cost drivers across all interventions. Costs were sensitive to changes in staff costs and population covered. CONCLUSIONS: In the trial, the incremental economic costs of community-led HI and LSM implementation were high compared to previous house improvement and LSM studies. Several factors, including intervention design, year-round LSM implementation and low human population density could explain the high costs. The factorial trial design necessitated use of proxies to allocate costs shared between trial arms, which limits generalizability where different designs are used. Nevertheless, costs may inform planners of similar intervention packages where cost-effectiveness is known. Trial registration Not applicable. The original trial was registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493.


Assuntos
Anopheles , Participação da Comunidade/economia , Controle de Mosquitos/economia , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Análise por Conglomerados , Participação da Comunidade/estatística & dados numéricos , Custos e Análise de Custo , Larva/crescimento & desenvolvimento , Malaui , Mosquitos Vetores/crescimento & desenvolvimento , Estudos Retrospectivos
11.
Malar J ; 20(1): 232, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022912

RESUMO

BACKGROUND: Current standard interventions are not universally sufficient for malaria elimination. The effects of community-based house improvement (HI) and larval source management (LSM) as supplementary interventions to the Malawi National Malaria Control Programme (NMCP) interventions were assessed in the context of an intensive community engagement programme. METHODS: The study was a two-by-two factorial, cluster-randomized controlled trial in Malawi. Village clusters were randomly assigned to four arms: a control arm; HI; LSM; and HI + LSM. Malawi NMCP interventions and community engagement were used in all arms. Household-level, cross-sectional surveys were conducted on a rolling, 2-monthly basis to measure parasitological and entomological outcomes over 3 years, beginning with one baseline year. The primary outcome was the entomological inoculation rate (EIR). Secondary outcomes included mosquito density, Plasmodium falciparum prevalence, and haemoglobin levels. All outcomes were assessed based on intention to treat, and comparisons between trial arms were conducted at both cluster and household level. RESULTS: Eighteen clusters derived from 53 villages with 4558 households and 20,013 people were randomly assigned to the four trial arms. The mean nightly EIR fell from 0.010 infectious bites per person (95% CI 0.006-0.015) in the baseline year to 0.001 (0.000, 0.003) in the last year of the trial. Over the full trial period, the EIR did not differ between the four trial arms (p = 0.33). Similar results were observed for the other outcomes: mosquito density and P. falciparum prevalence decreased over 3 years of sampling, while haemoglobin levels increased; and there were minimal differences between the trial arms during the trial period. CONCLUSIONS: In the context of high insecticide-treated bed net use, neither community-based HI, LSM, nor HI + LSM contributed to further reductions in malaria transmission or prevalence beyond the reductions observed over two years across all four trial arms. This was the first trial, as far as the authors are aware, to test the potential complementary impact of LSM and/or HI beyond levels achieved by standard interventions. The unexpectedly low EIR values following intervention implementation indicated a promising reduction in malaria transmission for the area, but also limited the usefulness of this outcome for measuring differences in malaria transmission among the trial arms. Trial registration PACTR, PACTR201604001501493, Registered 3 March 2016, https://pactr.samrc.ac.za/ .


Assuntos
Anopheles , Transmissão de Doença Infecciosa/prevenção & controle , Malária Falciparum/transmissão , Controle de Mosquitos , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Transmissão de Doença Infecciosa/estatística & dados numéricos , Larva , Malaui
12.
Trends Parasitol ; 36(11): 906-913, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917511

RESUMO

Malaria interventions may reduce the burden of clinical malaria disease, the transmission of malaria parasites, or both. As malaria interventions are developed and evaluated, including those interventions primarily targeted at reducing disease, they may also impact parasite transmission. Achieving global malaria eradication will require optimizing the transmission-reducing potential of all available interventions. Herein, we discuss the relationship between malaria parasite transmission and disease, including mechanisms by which disease-targeting interventions might also impact parasite transmission. We then focus on three malaria interventions with strong evidence for reducing the burden of clinical malaria disease and examine their potential for also reducing malaria parasite transmission.


Assuntos
Erradicação de Doenças , Malária/prevenção & controle , Malária/transmissão , Animais , Antimaláricos/uso terapêutico , Quimioprevenção/normas , Humanos , Malária/tratamento farmacológico , Malária/imunologia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/normas , Plasmodium/fisiologia
13.
Malar J ; 19(1): 195, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487233

RESUMO

BACKGROUND: To further reduce malaria, larval source management (LSM) is proposed as a complementary strategy to the existing strategies. LSM has potential to control insecticide resistant, outdoor biting and outdoor resting vectors. Concerns about costs and operational feasibility of implementation of LSM at large scale are among the reasons the strategy is not utilized in many African countries. Involving communities in LSM could increase intervention coverage, reduce costs of implementation and improve sustainability of operations. Community acceptance and participation in community-led LSM depends on a number of factors. These factors were explored under the Majete Malaria Project in Chikwawa district, southern Malawi. METHODS: Separate focus group discussions (FGDs) were conducted with members from the general community (n = 3); health animators (HAs) (n = 3); and LSM committee members (n = 3). In-depth interviews (IDIs) were conducted with community members. Framework analysis was employed to determine the factors contributing to community acceptance and participation in the locally-driven intervention. RESULTS: Nine FGDs and 24 IDIs were held, involving 87 members of the community. Widespread knowledge of malaria as a health problem, its mode of transmission, mosquito larval habitats and mosquito control was recorded. High awareness of an association between creation of larval habitats and malaria transmission was reported. Perception of LSM as a tool for malaria control was high. The use of a microbial larvicide as a form of LSM was perceived as both safe and effective. However, actual participation in LSM by the different interviewee groups varied. Labour-intensiveness and time requirements of the LSM activities, lack of financial incentives, and concern about health risks when wading in water bodies contributed to lower participation. CONCLUSION: Community involvement in LSM increased local awareness of malaria as a health problem, its risk factors and control strategies. However, community participation varied among the respondent groups, with labour and time demands of the activities, and lack of incentives, contributing to reduced participation. Innovative tools that can reduce the labour and time demands could improve community participation in the activities. Further studies are required to investigate the forms and modes of delivery of incentives in operational community-driven LSM interventions.


Assuntos
Anopheles , Participação da Comunidade/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Malária/psicologia , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Grupos Focais , Larva/crescimento & desenvolvimento , Malária/prevenção & controle , Malaui , Mosquitos Vetores/crescimento & desenvolvimento
14.
Acta Trop ; 210: 105558, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32485166

RESUMO

INTRODUCTION: Increasing the knowledgebase of anopheline larval ecology could enable targeted deployment of malaria control efforts and consequently reduce costs of implementation. In Malawi, there exists a knowledge gap in anopheline larval ecology and, therefore, basis for targeted deployment of larval source management (LSM) for malaria control, specifically larvicides. We set out to characterize anopheline larval habitats in the Majete area of Malawi on the basis of habitat ecology and anopheline larval productivity to create a basis for larval control initiatives in the country. METHODS: Longitudinal surveys were conducted in randomly selected larval habitats over a period of fifteen months in Chikwawa district, southern Malawi. Biotic and abiotic parameters of the habitats were modelled to determine their effect on the occurrence and densities of anopheline larvae. RESULTS: Seventy aquatic habitats were individually visited between 1-7 times over the study period. A total of 5,123 immature mosquitoes (3,359 anophelines, 1,497 culicines and 267 pupae) were collected. Anopheline and culicine larvae were observed in sympatry in aquatic habitats. Of the nine habitat types followed, dams, swamps, ponds, borehole runoffs and drainage channels were the five most productive habitat types for anopheline mosquitoes. Anopheline densities were higher in aquatic habitats with bare soil making up part of the surrounding land cover (p<0.01) and in aquatic habitats with culicine larvae (p<0.01) than in those surrounded by vegetation and not occupied by culicine larvae. Anopheline densities were significantly lower in highly turbid habitats than in clearer habitats (p<0.01). Presence of predators in the aquatic habitats significantly reduced the probability of anopheline larvae being present (p=0.04). CONCLUSIONS: Anopheline larval habitats are widespread in the study area. Presence of bare soil, culicine larvae, predators and the level of turbidity of water are the main determinants of anopheline larval densities in aquatic habitats in Majete, Malawi. While the most productive aquatic habitats should be prioritised, for the most effective control of vectors in the area all available aquatic habitats should be targeted, even those that are not characterized by the identified predictors. Further research is needed to determine whether targeted LSM would be cost-effective when habitat characterisation is included in cost analyses and to establish what methods would make the characterisation of habitats easier.


Assuntos
Anopheles/crescimento & desenvolvimento , Ecossistema , Malária/transmissão , Mosquitos Vetores/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Malária/prevenção & controle , Malaui , Controle de Mosquitos/métodos
15.
Parasit Vectors ; 13(1): 259, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32416733

RESUMO

BACKGROUND: Application of the larvicide Bacillus thuringiensis var. israelensis (Bti) is a viable complementary strategy for malaria control. Efficacy of Bti is dose-dependent. There is a knowledge gap on the effects of larval exposure to sublethal Bti doses on emerging adult mosquitoes. The present study examined the effect of larval exposure to sublethal doses of Bti on the survival, body size and oviposition rate in adult Anopheles coluzzii. METHODS: Third-instar An. coluzzii larvae were exposed to control and sublethal Bti concentrations at LC20, LC50 and LC70 for 48 h. Surviving larvae were reared to adults under standard colony conditions. Thirty randomly selected females from each treatment were placed in separate cages and allowed to blood feed. Twenty-five gravid females from the blood-feeding cages were randomly selected and transferred into new cages where they were provided with oviposition cups. Numbers of eggs laid in each cage and mortality of all adult mosquitoes were recorded daily. Wing lengths were measured of 570 mosquitoes as a proxy for body size. RESULTS: Exposure to LC70Bti doses for 48 h as third-instar larvae reduced longevity of adult An. coluzzii mosquitoes. Time to death was 2.58 times shorter in females exposed to LC70Bti when compared to the control females. Estimated mortality hazard rates were also higher in females exposed to the LC50 and LC20 treatments, but these differences were not statistically significant. The females exposed to LC70 concentrations had 12% longer wings than the control group (P < 0.01). No differences in oviposition rate of the gravid females were observed between the treatments. CONCLUSIONS: Exposure of An. coluzzii larvae to sublethal Bti doses reduces longevity of resultant adults and is associated with larger adult size and unclear effect on oviposition. These findings suggest that anopheline larval exposure to sublethal Bti doses, though not recommended, could reduce vectorial capacity for malaria vector populations by increasing mortality of resultant adults.


Assuntos
Anopheles/anatomia & histologia , Bacillus thuringiensis/fisiologia , Tamanho Corporal , Longevidade , Controle de Mosquitos/métodos , Oviposição , Animais , Anopheles/fisiologia , Feminino , Larva/anatomia & histologia , Larva/fisiologia , Masculino , Mosquitos Vetores/anatomia & histologia , Mosquitos Vetores/fisiologia , Controle Biológico de Vetores
16.
BMC Health Serv Res ; 19(1): 478, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299974

RESUMO

BACKGROUND: Malaria continues to place a high burden on communities due to challenges reaching intervention target levels in Chikwawa District, Malawi. The Hunger Project Malawi is using a health animator approach (HA) to address gaps in malaria control coverage. We explored the influence of community-based volunteers known as health animators (HAs) in malaria control. We assessed the impact of HAs on knowledge, attitudes, and practices towards malaria interventions. METHODS: This paper draws on the qualitative data collected to explore the roles of communities, HAs and formal health workers attending and not attending malaria workshops for malaria control. Purposive sampling was used to select 78 respondents. We conducted 10 separate focus group discussions (FGDs)-(n = 6) with community members and (n = 4) key informants. Nine in-depth interviews (IDIs) were held with HAs and Health Surveillance Assistants (HSAs) in three focal areas near Majete Wildlife Reserve. Nvivo 11 was used for coding and analysis. We employed the framework analysis and social capital theory to determine how the intervention influenced health and social outcomes. RESULTS: Using education, feedback sessions and advocacy in malaria workshop had mixed outcomes. There was a high awareness of community participation and comprehensive knowledge of the HA approach as key to malaria control. HAs were identified as playing a complementary role in malaria intervention. Community members' attitudes towards advocacy for better health services were poor. Attendance in malaria workshops was sporadic towards the final year of the intervention. Respondents mentioned positive attitudes and practices on net usage for prevention and prompt health-seeking behaviours. CONCLUSION: The HA approach is a useful strategy for complementing malaria prevention strategies in rural communities and improving practices for health-seeking behaviour. Various factors influence HAs' motivation, retention, community engagement, and programme sustainability. However, little is known about how these factors interact to influence volunteers' motivation, community participation and sustainability over time. More research is needed to explore the acceptability of an HA approach and the impact on malaria control in other rural communities in Malawi.


Assuntos
Agentes Comunitários de Saúde , Malária/prevenção & controle , Papel Profissional , Voluntários , Adolescente , Adulto , Agentes Comunitários de Saúde/estatística & dados numéricos , Feminino , Grupos Focais , Conhecimentos, Atitudes e Prática em Saúde , Pesquisa sobre Serviços de Saúde , Humanos , Malaui , Masculino , Pessoa de Meia-Idade , Pesquisa Qualitativa , Voluntários/estatística & dados numéricos , Adulto Jovem
17.
Acta Trop ; 197: 105059, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31194960

RESUMO

Assessing the biting behaviour of malaria vectors plays an integral role in understanding the dynamics of malaria transmission in a region. Biting times and preference for biting indoors or outdoors varies among mosquito species and across regions. These behaviours may also change over time in response to vector control measures such as long-lasting insecticidal nets (LLINs). Data on these parameters can provide the sites and times at which different interventions would be effective for vector control. This study assessed the biting patterns of malaria vectors in Chikwawa district, southern Malawi. The study was conducted during the dry and wet seasons in 2016 and 2017, respectively. In each season, mosquitoes were collected indoors and outdoors for 24 nights in six houses per night using the human landing catch. Volunteers were organized into six teams of two individuals, whereby three teams collected mosquitoes indoors and the other three collected mosquitoes outdoors each night, and the teams were rotated among twelve houses. All data were analyzed using Poisson log-linear models. The most abundant species were Anopheles gambiae sensu lato (primarily An. arabiensis) and An. funestus s.l. (exclusively An. funestus s.s.). During the dry season, the biting activity of An. gambiaes.l. was constant outdoors across the categorized hours (18:00 h to 08:45 h), but highest in the late evening hours (21:00 h to 23:45 h) during the wet season. The biting activity of An. funestus s.l. was highest in the late evening hours (21:00 h to 23:45 h) during the dry season and in the late night hours (03:00 h to 05:45 h) during the wet season. Whereas the number of An. funestuss.l. biting was constant (P = 0.662) in both seasons, that of An. gambiaes.l. was higher during the wet season than in the dry season (P = 0.001). Anopheles gambiae s.l. was more likely to bite outdoors than indoors in both seasons. During the wet season, An. funestus s.l. was more likely to bite indoors than outdoors but during the dry season, the bites were similar both indoors and outdoors. The biting activity that occurred in the early and late evening hours, both indoors and outdoors coincides with the times at which individuals may still be awake and physically active, and therefore unprotected by LLINs. Additionally, a substantial number of anopheline bites occurred outdoors. These findings imply that LLINs would only provide partial protection from malaria vectors, which would affect malaria transmission in this area. Therefore, protection against bites by malaria mosquitoes in the early and late evening hours is essential and can be achieved by designing interventions that reduce vector-host contacts during this period.


Assuntos
Anopheles/fisiologia , Comportamento Alimentar , Mordeduras e Picadas de Insetos , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Feminino , Malaui , Masculino , Estações do Ano
18.
Malar J ; 18(1): 51, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795766

RESUMO

BACKGROUND: Entomological monitoring is important for public health because it provides data on the distribution, abundance and host-seeking behaviour of disease vectors. Various methods for sampling mosquitoes exist, most of which are biased towards, or specifically target, certain portions of a mosquito population. This study assessed the Suna trap, an odour-baited trap for sampling host-seeking mosquitoes both indoors and outdoors. METHODS: Two separate field experiments were conducted in villages in southern Malawi. The efficiency of the Suna trap in sampling mosquitoes was compared to that of the human landing catch (HLC) indoors and outdoors and the Centers for Disease, Control and Prevention Light Trap (CDC-LT) indoors. Potential competition between two Suna traps during simultaneous use of the traps indoors and outdoors was assessed by comparing mosquito catch sizes across three treatments: one trap indoors only; one trap outdoors only; and one trap indoors and one trap outdoors used simultaneously at the same house. RESULTS: The efficiency of the Suna trap in sampling female anophelines was similar to that of HLC indoors (P = 0.271) and HLC outdoors (P = 0.125), but lower than that of CDC-LT indoors (P = 0.001). Anopheline catch sizes in the Suna trap used alone indoors were similar to indoor Suna trap catch sizes when another Suna trap was simultaneously present outdoors (P = 0.891). Similarly, catch sizes of female anophelines with the Suna trap outdoors were similar to those that were caught outdoors when another Suna trap was simultaneously present indoors (P = 0.731). CONCLUSIONS: The efficiency of the Suna trap in sampling mosquitoes was equivalent to that of the HLC. Whereas the CDC-LT was more efficient in collecting female anophelines indoors, the use of this trap outdoors is limited given the requirement of setting it next to an occupied bed net. As demonstrated in this research, outdoor collections are also essential because they provide data on the relative contribution of outdoor biting to malaria transmission. Therefore, the Suna trap could serve as an alternative to the HLC and the CDC-LT, because it does not require the use of humans as natural baits, allows standardised sampling conditions across sampling points, and can be used outdoors. Furthermore, using two Suna traps simultaneously indoors and outdoors does not interfere with the sampling efficiency of either trap, which would save a considerable amount of time, energy, and resources compared to setting the traps indoors and then outdoors in two consecutive nights.


Assuntos
Anopheles/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Culex/efeitos dos fármacos , Entomologia/métodos , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/crescimento & desenvolvimento , Culex/crescimento & desenvolvimento , Feminino , Malaui , Masculino , Mosquitos Vetores/crescimento & desenvolvimento
19.
Int J Epidemiol ; 47(6): 2015-2024, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376050

RESUMO

Background: Infectious disease interventions are increasingly tested using cluster-randomized trials (CRTs). These trial settings tend to involve a set of sampling units, such as villages, whose geographic arrangement may present a contamination risk in treatment exposure. The most widely used approach for reducing contamination in these settings is the so-called fried-egg design, which excludes the outer portion of all available clusters from the primary trial analysis. However, the fried-egg design ignores potential intra-cluster spatial heterogeneity and makes the outcome measure inherently less precise. Whereas the fried-egg design may be appropriate in specific settings, alternative methods to optimize the design of CRTs in other settings are lacking. Methods: We present a novel approach for CRT design that either fully includes or fully excludes available clusters in a defined study region, recognizing the potential for intra-cluster spatial heterogeneity. The approach includes an algorithm that allows investigators to identify the maximum number of clusters that could be included for a defined study region and maintain randomness in both the selection of included clusters and the allocation of clusters to either the treatment group or control group. The approach was applied to the design of a CRT testing the effectiveness of malaria vector-control interventions in southern Malawi. Conclusions: Those planning CRTs to evaluate interventions should consider the approach presented here during trial design. The approach provides a novel framework for reducing the risk of contamination among the CRT randomization units in settings where investigators determine the reduction of contamination risk as a high priority and where intra-cluster spatial heterogeneity is likely. By maintaining randomness in the allocation of clusters to either the treatment group or control group, the approach also permits a randomization-valid test of the primary trial hypothesis.


Assuntos
Doenças Transmissíveis , Transmissão de Doença Infecciosa/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Gestão de Riscos , Análise por Conglomerados , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Projetos de Pesquisa , Gestão de Riscos/métodos , Gestão de Riscos/organização & administração
20.
Malar J ; 17(1): 266, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012147

RESUMO

BACKGROUND: Increased engagement of communities has been emphasized in global plans for malaria control and elimination. Three interventions to reinforce and complement national malaria control recommendations were developed and applied within the context of a broad-based development initiative, targeting a rural population surrounding a wildlife reserve. The interventions, which were part of a 2-year research trial, and assigned to the village level, were implemented through trained local volunteers, or 'health animators', who educated the community and facilitated collective action. RESULTS: Community workshops on malaria were designed to increase uptake of national recommendations; a manual was developed, and training of health animators conducted, with educational content and analytical tools for a series of fortnightly community workshops in annual cycles at village level. The roll-back malaria principle of diagnosis, treatment and use of long-lasting insecticidal nets was a central component of the workshops. Structural house improvement to reduce entry of malaria vectors consisted of targeted activities in selected villages to mobilize the community into voluntarily closing the eaves and screening the windows of their houses; the project provided wire mesh for screening. Corrective measures were introduced to respond to field challenges. Committees were established at village level to coordinate the house improvement activities. Larval source management (LSM) in selected villages consisted of two parts: one on removal of standing water bodies by the community at large; and one on larviciding with bacterial insecticide Bacillus thuringiensis israelensis by trained village committees. Community workshops on malaria were implemented as 'core intervention' in all villages. House improvement and LSM were implemented in addition to community workshops on malaria in selected villages. CONCLUSIONS: Three novel interventions for community mobilization on malaria prevention and control were described. The interventions comprised local organizational structure, education and collective action, and incorporated elements of problem identification, planning and evaluation. These methods could be applicable to other countries and settings.


Assuntos
Anopheles , Participação da Comunidade/estatística & dados numéricos , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Animais , Habitação , Humanos , Larva , Malaui , População Rural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...